Angebote zu "Python" (30 Treffer)

Python - kurz & gut
14,90 € *
ggf. zzgl. Versand

Die objektorientierte Sprache Python eignet sich hervorragend zum Schreiben von Skripten, Programmen und Prototypen. Sie ist frei verfügbar, leicht zu lernen und zwischen allen wichtigen Plattformen portabel, einschließlich Linux, Unix, Windows und Mac OS. Damit Sie im Programmieralltag immer den Überblick behalten, sind die verschiedenen Sprachmerkmale und Elemente in Python - kurz & gut übersichtlich zusammengestellt. Für Auflage 5 wurde die Referenz komplett überarbeitet, erweitert und auf den neuesten Stand gebracht, so dass sie die beiden aktuellen Versionen 2.7 und 3.4 berücksichtigt. Python - kurz & gut behandelt unter anderem: Eingebaute Typen wie Zahlen, Listen, Dictionarys u.v.a. Anweisungen und Syntax für Entwicklung und Ausführung von Objekten Die objektorientierten Entwicklungstools in Python Eingebaute Funktionen, Ausnahmen und Attribute Spezielle Methoden zur Operatorenüberladung Weithin benutzte Standardbibliotheksmodule und Erweiterungen Kommandozeilenoptionen und Entwicklungswerkzeuge Mark Lutz stieg 1992 in die Python-Szene ein und ist seitdem als aktiver Pythonista bekannt. Er gibt Kurse, hat zahlreiche Bücher geschrieben und mehrere Python-Systeme programmiert.

Anbieter: buecher.de
Stand: 18.07.2018
Zum Angebot
Das große Python Workbook
16,90 € *
ggf. zzgl. Versand

Eine Programmiersprache lernen heißt, eine Sprache neu zu lernen. Dieses Arbeitsbuch ist als Workbook aufbereitet, wie Sie es vom Sprachunterricht, z.B. in Englisch, kennen. Neben der schrittweisen Erklärung der Inhalte finden Sie vielerlei Aufgaben und Übungen, die Ihnen Schritt für Schritt die Programmierung näher bringen. Das Buch ist besonders für den schulischen Unterricht in Gymnasien, Kollegs und in der gymnasialen Oberstufe geeignet. Für Selbstlerner gibt es zudem einen Löser mit allen Lösungen zu den Übungsaufgaben!

Anbieter: buecher.de
Stand: 18.07.2018
Zum Angebot
Applied Text Analysis with Python
39,99 € *
ggf. zzgl. Versand
Anbieter: buecher.de
Stand: 18.07.2018
Zum Angebot
Maschinelles Lernen
38,00 € *
ggf. zzgl. Versand

Maschinelles Lernen ist ein interdisziplinäres Fach, das die Bereiche Informatik, Mathematik und das jeweilige Anwendungsgebiet zusammenführt. In diesem Buch werden alle drei Teilgebiete gleichermaßen berücksichtigt: - Es wird demonstriert, wie man die Algorithmen des maschinellen Lernens verwendet und der Hintergrund geliefert, um zu verstehen, wie und warum diese Algorithmen funktionieren. - Ebenfalls enthalten ist ein kompakter Kickstart zur Verwendung von Python 3 und seinem Ökosystem im Umfeld des maschinellen Lernens. - Die Algorithmen werden zum besseren Verständnis und praktischen Einsatz anschaulich mittels NumPy und SciPy umgesetzt. - Für die Support Vector Machines und das Deep Learning wird auf scikit-learn bzw. Keras zurückgegriffen. - Es werden verschiedene Methoden des überwachten, unüberwachten und bestärkenden Lernens besprochen, u.a. Random Forest, DBSCAN und Q-Learning. Vorausgesetzt werden Kenntnisse in objektorientierter Programmierung und Basiswissen der Hochschulmathematik. Die nötige Mathematik wird eingebettet im Buch präsentiert und die Theorie direkt in Python-Code umgesetzt. Das Buch ist ideal für Studierende der Informatik, Mechatronik, Elektrotechnik und der angewandten Statistik/Data Science sowie für Ingenieure und Informatiker in der Praxis.

Anbieter: buecher.de
Stand: 18.07.2018
Zum Angebot
Algorithmen für Dummies
26,99 € *
ggf. zzgl. Versand

Wir leben in einer algorithmenbestimmten Welt. Deshalb lohnt es sich zu verstehen, wie Algorithmen arbeiten. Das Buch präsentiert die wichtigsten Anwendungsgebiete für Algorithmen: Optimierung, Sortiervorgänge, Graphentheorie, Textanalyse, Hashfunktionen. Zu jedem Algorithmus werden jeweils Hintergrundwissen und praktische Grundlagen vermittelt sowie Beispiele für aktuelle Anwendungen gegeben. Für interessierte Leser gibt es Umsetzungen in Python, sodass die Algorithmen auch verändert und die Auswirkungen der Veränderungen beobachtet werden können. Dieses Buch richtet sich an Menschen, die an Algorithmen interessiert sind, ohne eine Doktorarbeit zu dem Thema schreiben zu wollen. Wer es gelesen hat, versteht, wie wichtige Algorithmen arbeiten und wie man von dieser Arbeit beispielsweise bei der Entwicklung von Unternehmensstrategien profitieren kann.

Anbieter: buecher.de
Stand: 18.07.2018
Zum Angebot
Applied Scientific Computing
40,99 € *
ggf. zzgl. Versand

This easy-to-understand textbook presents a modern approach to learning numerical methods (or scientific computing), with a unique focus on the modeling and applications of the mathematical content. Emphasis is placed on the need for, and methods of, scientific computing for a range of different types of problems, supplying the evidence and justification to motivate the reader. Practical guidance on coding the methods is also provided, through simple-to-follow examples using Python. Topics and features: provides an accessible and applications-oriented approach, supported by working Python code for many of the methods; encourages both problem- and project-based learning through extensive examples, exercises, and projects drawn from practical applications; introduces the main concepts in modeling, python programming, number representation, and errors; explains the essential details of numerical calculus, linear, and nonlinear equations, including the multivariable Newton method; discusses interpolation and the numerical solution of differential equations, covering polynomial interpolation, splines, and the Euler, Runge-Kutta, and shooting methods; presents largely self-contained chapters, arranged in a logical order suitable for an introductory course on scientific computing. Undergraduate students embarking on a first course on numerical methods or scientific computing will find this textbook to be an invaluable guide to the field, and to the application of these methods across such varied disciplines as computer science, engineering, mathematics, economics, the physical sciences, and social science.

Anbieter: buecher.de
Stand: 18.07.2018
Zum Angebot
Pro Machine Learning Algorithms
28,99 € *
ggf. zzgl. Versand

Bridge the gap between a high-level understanding of how an algorithm works and knowing the nuts and bolts to tune your models better. This book will give you the confidence and skills when developing all the major machine learning models. In Pro Machine Learning Algorithms , you will first develop the algorithm in Excel so that you get a practical understanding of all the levers that can be tuned in a model, before implementing the models in Python/R. You will cover all the major algorithms: supervised and unsupervised learning, which include linear/logistic regression; k-means clustering; PCA; recommender system; decision tree; random forest; GBM; and neural networks. You will also be exposed to the latest in deep learning through CNNs, RNNs, and word2vec for text mining. You will be learning not only the algorithms, but also the concepts of feature engineering to maximize the performance of a model. You will see the theory along with case studies, such as sentiment classification, fraud detection, recommender systems, and image recognition, so that you get the best of both theory and practice for the vast majority of the machine learning algorithms used in industry. Along with learning the algorithms, you will also be exposed to running machine-learning models on all the major cloud service providers. You are expected to have minimal knowledge of statistics/software programming and by the end of this book you should be able to work on a machine learning project with confidence. What You Will Learn Get an in-depth understanding of all the major machine learning and deep learning algorithms Fully appreciate the pitfalls to avoid while building models Implement machine learning algorithms in the cloud Follow a hands-on approach through case studies for each algorithm Gain the tricks of ensemble learning to build more accurate models Discover the basics of programming in R/Python and the Keras framework for deep learning Who This Book Is For Business analysts/ IT professionals who want to transition into data science roles. Data scientists who want to solidify their knowledge in machine learning.

Anbieter: buecher.de
Stand: 18.07.2018
Zum Angebot
Defending IoT Infrastructures with the Raspberr...
19,99 € *
ggf. zzgl. Versand

Apply a methodology and practical solutions for monitoring the behavior of the Internet of Things (IoT), industrial control systems (ICS), and other critical network devices with the inexpensive Raspberry Pi. With this book, you will master passive monitoring and detection of aberrant behavior, and learn how to generate early indications and warning of attacks targeting IoT, ICS, and other critical network resources. Defending IoT Infrastructures with the Raspberry Pi provides techniques and scripts for the discovery of dangerous data leakage events emanating from IoT devices. Using Raspbian Linux and specialized Python scripts, the book walks through the steps necessary to monitor, detect, and respond to attacks targeting IoT devices. There are several books that cover IoT, IoT security, Raspberry Pi, and Python separately, but this book is the first of its kind to put them all together. It takes a practical approach, providing an entry point and level playing field for a wide range of individuals, small companies, researchers, academics, students, and hobbyists to participate. What You´ll Learn Create a secure, operational Raspberry Pi IoT sensor Configure and train the sensor using ´´normal´´ IoT behavior Establish analytics for detecting aberrant activities Generate real-time alerts to preempt attacks Identify and report data-leakage events originating from IoT devices Develop custom Python applications for cybersecurity Who This Book Is For Cybersecurity specialists, professors teaching in undergraduate and graduate programs in cybersecurity, students in cybersecurity and computer science programs, software developers and engineers developing new cybersecurity defenses, incident response teams, software developers and engineers in general, and hobbyists wanting to expand the application of Raspberry Pi into both IoT and cybersecurity

Anbieter: buecher.de
Stand: 18.07.2018
Zum Angebot
Analysis for Computer Scientists
40,99 € *
ggf. zzgl. Versand

This easy-to-follow textbook/reference presents a concise introduction to mathematical analysis from an algorithmic point of view, with a particular focus on applications of analysis and aspects of mathematical modelling. The text describes the mathematical theory alongside the basic concepts and methods of numerical analysis, enriched by computer experiments using MATLAB, Python, Maple, and Java applets. This fully updated and expanded new edition also features an even greater number of programming exercises. Topics and features: describes the fundamental concepts in analysis, covering real and complex numbers, trigonometry, sequences and series, functions, derivatives, integrals, and curves; discusses important applications and advanced topics, such as fractals and L-systems, numerical integration, linear regression, and differential equations; presents tools from vector and matrix algebra in the appendices, together with further information on continuity; includes added material on hyperbolic functions, curves and surfaces in space, second-order differential equations, and the pendulum equation (NEW); contains experiments, exercises, definitions, and propositions throughout the text; supplies programming examples in Python, in addition to MATLAB (NEW); provides supplementary resources at an associated website, including Java applets, code source files, and links to interactive online learning material. Addressing the core needs of computer science students and researchers, this clearly written textbook is an essential resource for undergraduate-level courses on numerical analysis, and an ideal self-study tool for professionals seeking to enhance their analysis skills.

Anbieter: buecher.de
Stand: 18.07.2018
Zum Angebot
Deep Learning for Natural Language Processing
25,99 € *
ggf. zzgl. Versand

Discover the concepts of deep learning used for natural language processing (NLP), with full-fledged examples of neural network models such as recurrent neural networks, long short-term memory networks, and sequence-2-sequence models. You´ll start by covering the mathematical prerequisites and the fundamentals of deep learning and NLP with practical examples. The first three chapters of the book cover the basics of NLP, starting with word-vector representation before moving onto advanced algorithms. The final chapters focus entirely on implementation, and deal with sophisticated architectures such as RNN, LSTM, and Seq2seq, using Python tools: TensorFlow, and Keras. Deep Learning for Natural Language Processing follows a progressive approach and combines all the knowledge you have gained to build a question-answer chatbot system. This book is a good starting point for people who want to get started in deep learning for NLP. All the code presented in the book will be available in the form of IPython notebooks and scripts, which allow you to try out the examples and extend them in interesting ways. What You Will Learn Gain the fundamentals of deep learning and its mathematical prerequisites Discover deep learning frameworks in Python Develop a chatbot Implement a research paper on sentiment classification Who This Book Is For Software developers who are curious to try out deep learning with NLP.

Anbieter: buecher.de
Stand: 18.07.2018
Zum Angebot